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11 Multiple Random Variables

One is often interested not only in individual random variables, but
also in relationships between two or more random variables. Fur-
thermore, one often wishes to make inferences about one random
variable on the basis of observations of other random variables.

Example 11.1. If the experiment is the testing of a new medicine,
the researcher might be interested in cholesterol level, blood pres-
sure, and the glucose level of a test person.

11.1 A Pair of Discrete Random Variables

In this section, we consider two discrete random variables, say X
and Y , simultaneously.

11.2. The analysis are different from Section 9.2 in two main
aspects. First, there may be no deterministic relationship (such as
Y = g(X)) between the two random variables. Second, we want
to look at both random variables as a whole, not just X alone or
Y alone.

Example 11.3. Communication engineers may be interested in
the input X and output Y of a communication channel.
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Example 11.4. Of course, to rigorously define (any) random vari-
ables, we need to go back to the sample space Ω. Recall Example
7.4 where we considered several random variables defined on the
sample space Ω = {1, 2, 3, 4, 5, 6} where the outcomes are equally
likely. In that example, we define X(ω) = ω and Y (ω) = (ω− 3)2.

Example 11.5. Consider the scores of 20 students below:

10, 9, 10, 9, 9, 10, 9, 10, 10, 9︸ ︷︷ ︸
Room #1

, 1, 3, 4, 6, 5, 5, 3, 3, 1, 3.︸ ︷︷ ︸
Room #2

The first ten scores are from (ten) students in room #1. The last
10 scores are from (ten) students in room #2.

Suppose we have the a score report card for each student. Then,
in total, we have 20 report cards.

Figure 24: In Example 11.5, we pick a report card randomly from a pile of
cards.

I pick one report card up randomly. Let X be the score on that
card.

• What is the chance that X > 5? (Ans: P [X > 5] = 11/20.)
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• What is the chance thatX = 10? (Ans: pX(10) = P [X = 10] =
5/20 = 1/4.)

Now, let the random variable Y denote the room# of the student
whose report card is picked up.

• What is the probability that X = 10 and Y = 2?

• What is the probability that X = 10 and Y = 1?

• What is the probability that X > 5 and Y = 1?

• What is the probability that X > 5 and Y = 2?

Now suppose someone informs me that the report card which I
picked up is from a student in room #1. (He may be able to tell
this by the color of the report card of which I have no knowledge.)
I now have an extra information that Y = 1.

• What is the probability that X > 5 given that Y = 1?

• What is the probability that X = 10 given that Y = 1?

151



11.6. Recall that, in probability, “,” means “and”. For example,

P [X = x, Y = y] = P [X = x and Y = y]

and

P [3 ≤ X < 4, Y < 1] = P [3 ≤ X < 4 and Y < 1]

= P [X ∈ [3, 4) and Y ∈ (−∞, 1)] .

In general, the event

[“Some condition(s) on X”,“Some condition(s) on Y ”]

is the same as the intersection of two events:

[“Some condition(s) on X”] ∩ [“Some condition(s) on Y ”]

which simply means both statements happen.
More technically,

[X ∈ B, Y ∈ C] = [X ∈ B and Y ∈ C] = [X ∈ B] ∩ [Y ∈ C]

and
P [X ∈ B, Y ∈ C] = P [X ∈ B and Y ∈ C]

= P ([X ∈ B] ∩ [Y ∈ C]) .

Remark: Linking back to the original sample space, this short-
hand actually says

[X ∈ B, Y ∈ C] = [X ∈ B and Y ∈ C]

= {ω ∈ Ω : X(ω) ∈ B and Y (ω) ∈ C}
= {ω ∈ Ω : X(ω) ∈ B } ∩ {ω ∈ Ω : Y (ω) ∈ C}
= [X ∈ B] ∩ [Y ∈ C] .
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11.7. The concept of conditional probability can be straightfor-
wardly applied to discrete random variables. For example,

P [“Some condition(s) on X” | “Some condition(s) on Y ”] (25)

is the conditional probability P (A|B) where

A = [“Some condition(s) on X”] and

B = [“Some condition(s) on Y ”].

Recall that P (A|B) = P (A ∩B)/P (B). Therefore,

P [X = x|Y = y] =
P [X = x and Y = y]

P [Y = y]
,

and

P [3 ≤ X < 4|Y < 1] =
P [3 ≤ X < 4 and Y < 1]

P [Y < 1]

More generally, (25) is

=
P ([“Some condition(s) on X”] ∩ [“Some condition(s) on Y ”])

P ([“Some condition(s) on Y ”])

=
P ([“Some condition(s) on X”,“Some condition(s) on Y ”])

P ([“Some condition(s) on Y ”])

=
P [“Some condition(s) on X”,“Some condition(s) on Y ”]

P [“Some condition(s) on Y ”]

More technically,

P [X ∈ B|Y ∈ C] = P ([X ∈ B] |[Y ∈ C]) =
P ([X ∈ B] ∩ [Y ∈ C])

P ([Y ∈ C])

=
P [X ∈ B, Y ∈ C]

P [Y ∈ C]
.
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Definition 11.8. Joint pmf : If X and Y are two discrete ran-
dom variables (defined on a same sample space with probability
measure P ), the function pX,Y (x, y) defined by

pX,Y (x, y) = P [X = x, Y = y]

is called the joint probability mass function of X and Y .

(a) We can visualize the joint pmf via stem plot. See Figure 25.

(b) To evaluate the probability for a statement that involves both
X and Y random variables:

We first find all pairs (x, y) that satisfy the condition(s) in
the statement, and then add up all the corresponding values
from the joint pmf .

More technically, we can then evaluate P [(X, Y ) ∈ R] by

P [(X, Y ) ∈ R] =
∑

(x,y):(x,y)∈R
pX,Y (x, y).

Example 11.9 (F2011). Consider random variables X and Y
whose joint pmf is given by

pX,Y (x, y) =

{
c (x+ y) , x ∈ {1, 3} and y ∈ {2, 4} ,
0, otherwise.

(a) Check that c = 1/20.

(b) Find P
[
X2 + Y 2 = 13

]
.

In most situation, it is much more convenient to focus on the
“important” part of the joint pmf. To do this, we usually present
the joint pmf (and the conditional pmf) in their matrix forms:
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Definition 11.10. When both X and Y take finitely many val-
ues (both have finite supports), say SX = {x1, . . . , xm} and SY =
{y1, . . . , yn}, respectively, we can arrange the probabilities pX,Y (xi, yj)
in an m× n matrix

pX,Y (x1, y1) pX,Y (x1, y2) . . . pX,Y (x1, yn)
pX,Y (x2, y1) pX,Y (x2, y2) . . . pX,Y (x2, yn)

...
... . . . ...

pX,Y (xm, y1) pX,Y (xm, y2) . . . pX,Y (xm, yn)

 . (26)

• We shall call this matrix the joint pmf matrix.

• The sum of all the entries in the matrix is one.

2.3 Multiple random variables 75

Example 2.13. In the preceding example, what is the probability that the first cache

miss occurs after the third memory access?

Solution. We need to find

P(T > 3) =
∞

∑
k=4

P(T = k).

However, since P(T = k) = 0 for k ≤ 0, a finite series is obtained by writing

P(T > 3) = 1−P(T ≤ 3)

= 1−
3

∑
k=1

P(T = k)

= 1− (1− p)[1+ p+ p2].

Joint probability mass functions

The joint probability mass function of X and Y is defined by

pXY (xi,y j) := P(X = xi,Y = y j). (2.7)

An example for integer-valued random variables is sketched in Figure 2.8.
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Figure 2.8. Sketch of bivariate probability mass function pXY (i, j).

It turns out that we can extract the marginal probability mass functions pX (xi) and

pY (y j) from the joint pmf pXY (xi,y j) using the formulas

pX (xi) = ∑
j

pXY (xi,y j) (2.8)

Figure 25: Example of the plot of a joint pmf. [9, Fig. 2.8]

• pX,Y (x, y) = 0 if46 x /∈ SX or y /∈ SY . In other words, we
don’t have to consider the x and y outside the supports of X
and Y , respectively.

46To see this, note that pX,Y (x, y) can not exceed pX(x) because P (A ∩B) ≤ P (A). Now,
suppose at x = a, we have pX(a) = 0. Then pX,Y (a, y) must also = 0 for any y because it can
not exceed pX(a) = 0. Similarly, suppose at y = a, we have pY (a) = 0. Then pX,Y (x, a) = 0
for any x.
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11.11. From the joint pmf, we can find pX(x) and pY (y) by

pX(x) =
∑
y

pX,Y (x, y) (27)

pY (y) =
∑
x

pX,Y (x, y) (28)

In this setting, pX(x) and pY (y) are call the marginal pmfs (to
distinguish them from the joint one).

(a) Suppose we have the joint pmf matrix in (26). Then, the sum
of the entries in the ith row is47 pX(xi), and
the sum of the entries in the jth column is pY (yj):

pX(xi) =
n∑
j=1

pX,Y (xi, yj) and pY (yj) =
m∑
i=1

pX,Y (xi, yj)

(b) In MATLAB, suppose we save the joint pmf matrix as P XY, then
the marginal pmf (row) vectors p X and p Y can be found by

p_X = (sum(P_XY,2))’

p_Y = (sum(P_XY,1))

Example 11.12. Consider the following joint pmf matrix

47To see this, we consider A = [X = xi] and a collection defined by Bj = [Y = yj ]
and B0 = [Y /∈ SY ]. Note that the collection B0, B1, . . . , Bn partitions Ω. So, P (A) =∑n
j=0 P (A ∩Bj). Of course, because the support of Y is SY , we have P (A∩B0) = 0. Hence,

the sum can start at j = 1 instead of j = 0.
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Definition 11.13. The conditional pmf of X given Y is defined
as

pX|Y (x|y) = P [X = x|Y = y]

which gives

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x). (29)

11.14. Equation (29) is quite important in practice. In most
cases, systems are naturally defined/given/studied in terms of their
conditional probabilities, say pY |X(y|x). Therefore, it is important
the we know how to construct the joint pmf from the conditional
pmf.

Example 11.15. Consider a binary symmetric channel. Suppose
the input X to the channel is Bernoulli(0.3). At the output Y of
this channel, the crossover (bit-flipped) probability is 0.1. Find
the joint pmf pX,Y (x, y) of X and Y .

Exercise 11.16. Toss-and-Roll Game:

Step 1 Toss a fair coin. Define X by

X =

{
1, if result = H,
0, if result = T.

Step 2 You have two dice, Dice 1 and Dice 2. Dice 1 is fair. Dice 2 is
unfair with p(1) = p(2) = p(3) = 2

9 and p(4) = p(5) = p(6) =
1
9 .

(i) If X = 0, roll Dice 1.

(ii) If X = 1, roll Dice 2.
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Record the result as Y .

Find the joint pmf pX,Y (x, y) of X and Y .

Exercise 11.17 (F2011). Continue from Example 11.9. Random
variables X and Y have the following joint pmf

pX,Y (x, y) =

{
c (x+ y) , x ∈ {1, 3} and y ∈ {2, 4} ,
0, otherwise.

(a) Find pX(x).

(b) Find EX.

(c) Find pY |X(y|1). Note that your answer should be of the form

pY |X(y|1) =


?, y = 2,
?, y = 4,
0, otherwise.

(d) Find pY |X(y|3).

Definition 11.18. The joint cdf of X and Y is defined by

FX,Y (x, y) = P [X ≤ x, Y ≤ y] .
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Definition 11.19. Two random variables X and Y are said to be
identically distributed if, for every B, P [X ∈ B] = P [Y ∈ B].

Example 11.20. Let X ∼ Bernoulli(1/2). Let Y = X and
Z = 1 − X. Then, all of these random variables are identically
distributed.

11.21. The following statements are equivalent:

(a) Random variables X and Y are identically distributed .

(b) For every B, P [X ∈ B] = P [Y ∈ B]

(c) pX(c) = pY (c) for all c

(d) FX(c) = FY (c) for all c

Definition 11.22. Two random variables X and Y are said to be
independent if the events [X ∈ B] and [Y ∈ C] are independent
for all sets B and C.

11.23. The following statements are equivalent:

(a) Random variables X and Y are independent .

(b) [X ∈ B] |= [Y ∈ C] for all B,C.

(c) P [X ∈ B, Y ∈ C] = P [X ∈ B]× P [Y ∈ C] for all B,C.

(d) pX,Y (x, y) = pX(x)× pY (y) for all x, y.

(e) FX,Y (x, y) = FX(x)× FY (y) for all x, y.

Definition 11.24. Two random variables X and Y are said to be
independent and identically distributed (i.i.d.) if X and
Y are both independent and identically distributed.

11.25. Being identically distributed does not imply independence.
Similarly, being independent, does not imply being identically dis-
tributed.
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Example 11.26. Roll a dice. Let X be the result. Set Y = X.

Example 11.27. Suppose the pmf of a random variable X is given
by

pX (x) =


1/4, x = 3,
α, x = 4,
0, otherwise.

Let Y be another random variable. Assume that X and Y are
i.i.d.

Find

(a) α,

(b) the pmf of Y , and

(c) the joint pmf of X and Y .
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Example 11.28. Consider a pair of random variables X and Y
whose joint pmf is given by

pX,Y (x, y) =


1/15, x = 3, y = 1,
2/15, x = 4, y = 1,
4/15, x = 3, y = 3,
β, x = 4, y = 3,
0, otherwise.

(a) Are X and Y identically distributed?

(b) Are X and Y independent?
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11.2 Extending the Definitions to Multiple RVs

Definition 11.29. Joint pmf:

pX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 = x1, X2 = x2, . . . , Xn = xn] .

Joint cdf:

FX1,X2,...,Xn
(x1, x2, . . . , xn) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] .

11.30. Marginal pmf:

Definition 11.31. Identically distributed random variables:
The following statements are equivalent.

(a) Random variables X1, X2, . . . are identically distributed

(b) For every B, P [Xj ∈ B] does not depend on j.

(c) pXi
(c) = pXj

(c) for all c, i, j.

(d) FXi
(c) = FXj

(c) for all c, i, j.

Definition 11.32. Independence among finite number of ran-
dom variables: The following statements are equivalent.

(a) X1, X2, . . . , Xn are independent

(b) [X1 ∈ B1], [X2 ∈ B2], . . . , [Xn ∈ Bn] are independent, for all
B1, B2, . . . , Bn.

(c) P [Xi ∈ Bi,∀i] =
∏n

i=1 P [Xi ∈ Bi], for all B1, B2, . . . , Bn.

(d) pX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 pXi

(xi) for all x1, x2, . . . , xn.

(e) FX1,X2,...,Xn
(x1, x2, . . . , xn) =

∏n
i=1 FXi

(xi) for all x1, x2, . . . , xn.

Example 11.33. Toss a coin n times. For the ith toss, let

Xi =

{
1, if H happens on the ith toss,
0, if T happens on the ith toss.

We then have a collection of i.i.d. random variablesX1, X2, X3, . . . , Xn.
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Example 11.34. Roll a dice n times. Let Ni be the result of the
ith roll. We then have another collection of i.i.d. random variables
N1, N2, N3, . . . , Nn.

Example 11.35. Let X1 be the result of tossing a coin. Set X2 =
X3 = · · · = Xn = X1.

11.36. If X1, X2, . . . , Xn are independent, then so is any subcol-
lection of them.

11.37. For i.i.d. Xi ∼ Bernoulli(p), Y = X1 + X2 + · · · + Xn is
B(n, p).

Definition 11.38. A pairwise independent collection of ran-
dom variables is a collection of random variables any two of which
are independent.

(a) Any collection of (mutually) independent random variables is
pairwise independent

(b) Some pairwise independent collections are not independent.
See Example (11.39).

Example 11.39. Let suppose X, Y , and Z have the following
joint probability distribution: pX,Y,Z (x, y, z) = 1

4 for (x, y, z) ∈
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. This, for example, can be con-
structed by starting with independent X and Y that are Bernoulli-
1
2 . Then set Z = X ⊕ Y = X + Y mod 2.

(a) X, Y, Z are pairwise independent.

(b) X, Y, Z are not independent.
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